
Network Automation Workshop
Introduction to Ansible for network engineers and operators

2

● Timing
● Breaks
● Takeaways

Housekeeping

● Introduction to Ansible automation
● How Ansible works for network automation
● Understanding Ansible modules and playbooks
● Executing Ansible playbooks to:

○ Make configuration changes
○ Gather information (Ansible facts)

● Using Jinja to template network configurations
● Using Ansible Tower to scale automation to the enterprise

3

What you will learn

Introduction

4

Ansible Network Automation Workshop

Topics Covered:

● What is the Ansible Automation Platform?

● What can it do?

● Why Network Automation?

● How Ansible Network Automation works

Automation happens when one person meets a
problem they never want to solve again

Teams are automating...

Lines Of Business Network Security Operations Developers Infrastructure

Ansible used in silo

DIY scripting automation

Open source config
management tool

Proprietary vendor supplied
automation

Ad-hoc Automation is happening in silos

Network

Infrastructure

Security

Developers

Is organic
automation enough?

Why Ansible?

Simple Powerful Agentless

App deployment

Configuration management

Workflow orchestration

Network automation

Orchestrate the app lifecycle

Human readable automation

No special coding skills needed

Tasks executed in order

Usable by every team

Get productive quickly

Agentless architecture

Uses OpenSSH & WinRM

No agents to exploit or update

Get started immediately

More efficient & more secure

What can I do using Ansible?
Automate the deployment and management of your entire IT footprint.

Orchestration

Do this...

Firewalls

Configuration
Management

Application
Deployment Provisioning Continuous

Delivery
Security and
Compliance

On these...

Load Balancers Applications Containers Clouds

Servers Infrastructure Storage And more...Network Devices

When automation crosses teams,
you need an automation platform

Lines Of Business

Network

Security Operations

Developers

Infrastructure

Red Hat Ansible Automation Platform

Lines of
businessNetwork OperationsSecurity Infrastructure Developers

Ansible Tower: Operate & control at scale

Ansible Engine: Universal language of automation

Fueled by an open source community

Engage

Scale

Create

Ansible SaaS: Engage users with an automation focused experience

Cloud Virt & Container Windows Network Security Monitoring

Ansible automates technologies you use
Time to automate is measured in minutes

AWS
Azure
Digital Ocean
Google
OpenStack
Rackspace
+more

Docker
VMware
RHV
OpenStack
OpenShift
+more

ACLs
Files
Packages
IIS
Regedits
Shares
Services
Configs
Users
Domains
+more

A10
Arista
Aruba
Cumulus
Bigswitch
Cisco
Dell
Extreme
F5
Lenovo
MikroTik
Juniper
OpenSwitch
+more

Checkpoint
Cisco
CyberArk
F5
Fortinet
Juniper
IBM
Palo Alto
Snort
+more

Dynatrace
Datadog
LogicMonitor
New Relic
Sensu
+more

Devops
Jira
GitHub
Vagrant
Jenkins
Slack
+more

Storage
Netapp
Red Hat Storage
Infinidat
+more

Operating
Systems
RHEL
Linux
Windows
+more

3
ROI on Ansible Tower

146%
< MONTHS
Payback on Ansible Tower

Financial summary:

SOURCE: "The Total Economic Impact™ Of Red Hat Ansible Tower, a June 2018 commissioned study conducted by Forrester Consulting on behalf of Red Hat."
redhat.com/en/engage/total-economic-impact-ansible-tower-20180710

Reduction in recovery time following
a security incident94%

84% Savings by deploying workloads
to generic systems appliances
using Ansible Tower

67% Reduction in man hours required
for customer deliveries

Red Hat Ansible Tower
by the numbers:

https://www.redhat.com/en/engage/total-economic-impact-ansible-tower-20180710

USE CASE:

NETWORK AUTOMATION

71%
of networks are still
driven manually via CLI

Source: Gartner, Look Beyond Network Vendors for Innovation. January 2018

NOT AS SIMPLE ANYMORE

WHY ANSIBLE?

SIMPLE POWERFUL AGENTLESS

For operators, not
developers

Download and go

Existing knowledge reuse

Ideal for network gear

No agents to exploit or
update

Standards-based SSH

Connect via Plugins

Easy platform enablement

Leverage Linux tools

(for networks)

17

ANSIBLE NETWORK AUTOMATION

ansible.com/for/networks
galaxy.ansible.com/ansible-network

1000+
Network
Modules

65+
Network

Platforms

15*
Galaxy

Network Roles

*Roles developed and maintained by Ansible Network Engineering

https://www.ansible.com/products/network-automation
https://galaxy.ansible.com/ansible-network

Common use cases

● Schedule backups
● Restore from any

timestamp
● Build workflows that

rollback

Backup and Restore

● Check configuration
standards

● Track configuration drift
● Enforce configuration

policy

Configuration Compliance

● Build reports
● Grab software versions,

MTU, interfaces status
● Audit system services and

other common config

Dynamic Documentation

✓

✓ ✓ ✓

How Ansible Network Automation works

NETWORKING
DEVICES

LINUX/WINDOWS
HOSTS

Module code is
copied to the
managed node,
executed, then
removed

Module code is
executed locally
on the control
node

Red Hat Ansible Engine:

Universal language
of automation

Engage Ansible SaaS: Engage users with an automation focused experience

Red Hat Ansible Automation Platform

Lines of
businessNetwork OperationsSecurity Infrastructure Developers

Ansible Tower: Operate & control at scale

Fueled by an open source community

Scale

Create Simple
Human readable automation

Powerful
Thousands of integrations

Agentless
No agents to exploit or update

Exercise 1

23

Ansible Network Automation Workshop

Topics Covered:

● Understanding Inventory

● An example Ansible Playbook

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

MODULES

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

MODULES

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

 PLAYBOOKS ARE WRITTEN IN YAML
 Tasks are executed sequentially
 Invoke Ansible modules

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

 MODULES ARE “TOOLS IN THE TOOLKIT”
 Python, Powershell, or any language
 Extend Ansible simplicity to the entire stack

MODULES

- name: latest index.html file is present
 template:
 src: files/index.html
 dest: /var/www/html/

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

CLI

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

 PLUGINS ARE “GEARS IN THE ENGINE”
 Code that plugs into the core engine
 Adaptability for various uses & platforms

MODULES PLUGINS

{{ some_variable | to_nice_yaml }}

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

HOSTS

NETWORK
DEVICES

CLI

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

MODULES PLUGINS

INVENTORY

INVENTORY
List of systems in your infrastructure that
automation is executed against

 [web]
 webserver1.example.com
 webserver2.example.com

 [db]
 dbserver1.example.com

 [switches]
 leaf01.internal.com
 leaf02.internal.com

 [firewalls]
 checkpoint01.internal.com

 [lb]
 f5-01.internal.com

rtr1 ansible_host=18.220.156.59

rtr2 ansible_host=18.221.53.11

rtr3 ansible_host=13.59.242.237

rtr4 ansible_host=3.16.82.231

rtr5

rtr6

Understanding Inventory

Understanding Inventory - Groups
There is always a group called "all" by default

Groups can be nested

[cisco]
rtr1 ansible_host=18.220.156.59 private_ip=172.16.184.164
[arista]
rtr2 ansible_host=18.221.53.11 private_ip=172.17.229.213
rtr4 ansible_host=3.16.82.231 private_ip=172.17.209.186
[juniper]
rtr3 ansible_host=13.59.242.237 private_ip=172.16.39.75

[routers:children]
cisco
juniper
arista

[cisco]
rtr1 ansible_host=52.14.208.176 private_ip=172.16.59.243

[arista]
rtr2 ansible_host=18.221.195.152 private_ip=172.17.235.51
rtr4 ansible_host=18.188.124.127 private_ip=172.17.43.134

[juniper]
rtr3 ansible_host=3.15.11.56 private_ip=172.16.94.233

[cisco:vars]
ansible_user=ec2-user
ansible_network_os=ios
ansible_connection=network_cli

Group variables apply for all
devices in that group

Host variables apply to the
host and override group vars

Understanding Inventory - Variables

● Playbook is a list of plays.

● Each play is a list of tasks.

● Tasks invoke modules.

● A playbook can contain more than

one play.

- name: deploy vlans
 hosts: cisco
 gather_facts: no

 tasks:
 - name: ensure vlans exist
 nxos_vlan:
 vlan_id: 100
 admin_state: up
 name: WEB

A Sample Ansible Playbook

Exercise 1 - Exploring the lab environment
In this lab you will explore the lab environment and build familiarity with the
lab inventory.

Approximate time: 10 mins

Exercise 2

34

Ansible Network Automation Workshop

Topics Covered:

● An Ansible Play

● Ansible Modules

● Running an Ansible Playbook

An Ansible Playbook Example

- name: snmp ro/rw string configuration
 hosts: cisco
 gather_facts: no

 tasks:
 - name: ensure snmp strings are present
 ios_config:
 lines:
 - snmp-server community ansible-public RO
 - snmp-server community ansible-private RW

● The name parameter describes the Ansible Play
● Target devices using the hosts parameter
● Optionally disable gather_facts

- name: snmp ro/rw string configuration
 hosts: cisco
 gather_facts: no

Ansible Playbook - Play definition

Modules
Modules do the actual work in Ansible, they are what
gets executed in each playbook task.
● Typically written in Python (but not limited to it)
● Modules can be idempotent
● Modules take user input in the form of parameters

 tasks:
 - name: ensure snmp strings are present
 ios_config:
 commands:
 - snmp-server community ansible-public RO
 - snmp-server community ansible-private RW

● *_facts
● *_command
● *_config

More modules depending on
platform

Ansible modules for network automation typically references the vendor OS
followed by the module name.

Arista EOS = eos_*

Cisco IOS/IOS-XE = ios_*

Cisco NX-OS = nxos_*

Cisco IOS-XR = iosxr_*

F5 BIG-IP = bigip_*

F5 BIG-IQ = bigiq_*

Juniper Junos = junos_*

VyOS = vyos_*

Network modules

[student1@ansible networking-workshop]$ ansible-playbook playbook.yml

PLAY [snmp ro/rw string configuration] ***

TASK [ensure that the desired snmp strings are present] **
changed: [rtr1]

PLAY RECAP **
rtr1 : ok=1 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

- name: snmp ro/rw string configuration
 hosts: cisco
 gather_facts: no

 tasks:
 - name: ensure snmp strings are present
 ios_config:
 commands:
 - snmp-server community ansible-public RO
 - snmp-server community ansible-private RW

Running a playbook

[student1@ansible networking-workshop]$ ansible-playbook playbook.yml -v
Using /home/student1/.ansible.cfg as config file

PLAY [snmp ro/rw string configuration] ***

TASK [ensure that the desired snmp strings are present] **
changed: [rtr1] => changed=true
 ansible_facts:
 discovered_interpreter_python: /usr/bin/python
 banners: {}
 commands:
 - snmp-server community ansible-public RO
 - snmp-server community ansible-private RW
 updates:
 - snmp-server community ansible-public RO
 - snmp-server community ansible-private RW

PLAY RECAP ***
rtr1 : ok=1 changed=1 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Increase the level of verbosity by adding more "v's" -vvvv

Displaying output

Exercise 2 - Execute your first network
automation playbook
In this lab you will use Ansible to update the configuration of routers. This
exercise will not have you create an Ansible Playbook; you will use an existing
one.

Approximate time: 15 mins

Exercise 3

42

Ansible Network Automation Workshop

Topics Covered:

● Ansible Documentation and ansible-doc

● Facts for Network Devices

● The debug module

http://bit.ly/AnsibleNetwork

“Ansible for Network Automation” Documentation

https://docs.ansible.com/

● Documentation is required as
part of module submission

● Multiple Examples for every
module

● Broken into relevant sections

Module Documentation

Documentation right on the command line

Module Documentation

Arista EOS

Cisco IOS

Juniper Junos

 eos_facts

 ios_facts

 junos_facts

Fact modules

rtr1#show version
Cisco IOS XE Software, Version 16.09.02
Cisco IOS Software [Fuji], Virtual XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 16.9.2, RELEASE SOFTWARE (fc4)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2018 by Cisco Systems, Inc.
Compiled Mon 05-Nov-18 19:26 by mcpre
..
.
<rest of output removed for brevity>
.

[student1@ansible ~]$ ansible -m ios_facts rtr1
.<<abbreviated output>>
.
 "ansible_net_iostype": "IOS-XE",
 "ansible_net_memfree_mb": 1853921,
 "ansible_net_memtotal_mb": 2180495,
 "ansible_net_model": "CSR1000V",
 "ansible_net_neighbors": {},
 "ansible_net_python_version": "2.7.5",
 "ansible_net_serialnum": "964A1H0D1RM",
 "ansible_net_system": "ios",
 "ansible_net_version": "16.09.02",
.
.

Fact modules return structured data

- name: gather information from routers
 hosts: cisco
 gather_facts: no

 tasks:
 - name: gather router facts
 ios_facts:

Ansible Fact Playbook Example

[student1@ansible networking-workshop]$ ansible-playbook facts.yml

PLAY [gather information from routers] ***

TASK [gather router facts] ***
ok: [rtr1]

PLAY RECAP ***
rtr1 : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

● What did this Ansible Playbook do?
● Where are the facts?
● How do I use the facts?

Running the Ansible Playbook

[student1@ansible networking-workshop]$ ansible-playbook facts.yml -v

PLAY [gather information from routers] ***
Using /home/student1/.ansible.cfg as config file

TASK [gather router facts] ***
ok: [rtr1] => changed=false
 ansible_net_iostype: IOS-XE
 ansible_net_memtotal_mb: 2180495
 ansible_net_model: CSR1000V
 ansible_net_python_version: 2.7.5
 ansible_net_serialnum: 964A1H0D1RM
 ansible_net_system: ios
 ansible_net_version: 16.09.02
 <<abbreviated output>>

PLAY RECAP **
rtr1 : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Running the Ansible Playbook with verbosity

The debug module is used like a "print" statement in most
programming languages. Variables are accessed using "{{ }}" -
quoted curly braces

 - name: display version
 debug:
 msg: "The IOS version is: {{ ansible_net_version }}"

 - name: display serial number
 debug:
 msg: "The serial number is: {{ ansible_net_serialnum }}"

Displaying output - The “debug” module

[student1@ansible networking-workshop]$ ansible-playbook facts.yml

PLAY [gather information from routers] **

TASK [gather router facts] **
ok: [rtr1]

TASK [display version] **
ok: [rtr1] =>
 msg: 'The IOS version is: 16.09.02'

TASK [display serial number] **
ok: [rtr1] =>
 msg: The serial number is: 964A1H0D1RM

PLAY RECAP **
rtr1 : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Running the Ansible Playbook with verbosity

Build reports with Ansible Facts

Exercise 3 - Ansible Facts

Demonstration use of Ansible facts on network infrastructure.

Approximate time: 15 mins

Exercise 4

55

Ansible Network Automation Workshop

Topics Covered:

● Understand group variables

● Understand Jinja2

● cli_config module

Group variables are variables that are common between two or more devices.
Group variables can be associated with an individual group (e.g. “cisco”) or a nested
group (e.g. routers).

Examples include
● NTP servers
● DNS servers
● SNMP information

Basically network information that is common for that group

Group variables

inventory group_vars

Group variables can be stored in a directory called group_vars in YAML syntax. In
exercise one we covered host_vars and group_vars with relationship to inventory.
What is the difference?

Can be used to set variables to connect
and authenticate to the device.

Examples include:
● Connection plugins (e.g. network_cli)
● Usernames
● Platform types

(ansible_network_os)

Can be used to set variables to configure
on the device.

Examples include:
● VLANs
● Routing configuration
● System services (NTP, DNS, etc)

Inventory versus group_vars directory

At the same directory level as the Ansible Playbook create a folder named group_vars.
Group variable files can simply be named the group name (in this case all.yml)

[student1@ansible networking-workshop]$ cat group_vars/all.yml

nodes:
 rtr1:
 Loopback100: "192.168.100.1"
 rtr2:
 Loopback100: "192.168.100.2"
 rtr3:
 Loopback100: "192.168.100.3"
 rtr4:
 Loopback100: "192.168.100.4"

Examining a group_vars file

● Ansible has native integration with the Jinja2 templating engine
● Render data models into device configurations
● Render device output into dynamic documentation

Jinja2 enables the user to manipulate variables, apply conditional
logic and extend programmability for network automation.

Jinja2

Variables

Template

cli_config (agnostic)

ios_config:

nxos_config:

iosxr_config:

eos_config

.

.

*os_config:

Network Automation config modules

!
ntp server {{ntp_server}}
!
ip name-server {{name_server}}
!

ntp_server: 192.168.0.250
name_server: 192.168.0.251

!
ip name-server 192.168.0.251
!
ntp server 192.168.0.250
!

rtr1 rtrX
Generated Network Configuration

Jinja2 TemplateVariables

!
ip name-server 192.168.0.251
!
ntp server 192.168.0.250
!

Jinja2 Templating Example (1/2)

{% for interface,ip in nodes[inventory_hostname].items()
%}
interface {{interface}}
 ip address {{ip}} 255.255.255.255
{% endfor %}

nodes:
 rtr1:
 Loopback100: "192.168.100.1"
 rtr2:
 Loopback100: "192.168.100.2"
 rtr3:
 Loopback100: "192.168.100.3"
 rtr4:
 Loopback100: "192.168.100.4"

interface Loopback100
 ip address 192.168.100.1
!

rtr1 rtr2 rtrX
Generated Network Configuration

Jinja2 TemplateVariables

interface Loopback100
 ip address 192.168.100.2
!

interface Loopback100
 ip address X
!

Jinja2 Templating Example (2/2)

Agnostic module for network devices that uses the network_cli
connection plugin.

- name: configure network devices
 hosts: rtr1,rtr2
 gather_facts: false
 tasks:
 - name: configure device with config
 cli_config:
 config: "{{ lookup('template', 'template.j2') }}"

The cli_config module

Exercise 4 - Network Configuration with Jinja
Templates
Demonstration templating a network configuration and pushing it a device

Approximate time: 15 mins

Tower Introduction

65

Ansible Network Automation Workshop

Topics Covered:

● What is Ansible Tower?

● Job Templates

○ Inventory
○ Credentials
○ Projects

Engage Ansible SaaS: Engage users with an automation focused experience

Red Hat Ansible Automation Platform

Lines of
businessNetwork OperationsSecurity Infrastructure Developers

Fueled by an open source community

Ansible Engine: Universal language of automationCreate

Scale Control
Web UI and API

Delegation
Role Based Access Controls

Scale
Scalable Execution Capacity

Ansible Tower is a UI and RESTful API allowing
you to scale IT automation, manage complex
deployments and speed productivity.

• Role-based access control

• Deploy entire applications with
 push-button deployment access

• All automations are centrally logged

• Powerful workflows match your IT processes

What is Ansible Tower?

RBAC

Allow restricting playbook access to
authorized users. One team can use
playbooks in check mode (read-only)
while others have full administrative
abilities.

Push button

An intuitive user interface experience
makes it easy for novice users to
execute playbooks you allow them
access to.

RESTful API

With an API first mentality every feature
and function of Tower can be API driven.
Allow seamless integration with other
tools like ServiceNow and Infoblox.

Workflows

Ansible Tower’s multi-playbook
workflows chain any number of
playbooks, regardless of whether they
use different inventories, run as different
users, run at once or utilize different
credentials.

Enterprise integrations

Integrate with enterprise authentication
like TACACS+, RADIUS, Azure AD. Setup
token authentication with OAuth 2.
Setup notifications with PagerDuty,
Slack and Twilio.

Centralized logging

All automation activity is securely
logged. Who ran it, how they customized
it, what it did, where it happened - all
securely stored and viewable later, or
exported through Ansible Tower’s API.

Red Hat Ansible Tower

USE
CASES

USERS

CLOUD

AWS,
GOOGLE CLOUD,
AZURE,
IBM CLOUD …

INFRASTRUCTURE

LINUX,
OPENSHIFT,
WINDOWS,
VMWARE,
OPERATORS,
CONTAINERS …

NETWORK

ARISTA,
CISCO,
JUNIPER
INFOBLOX
F5 …

SECURITY

CHECKPOINT,
QRADAR,
SNORT
CYBERARK,
SPLUNK,
FORTINET …

SERVICES

DATABASES,
LOGGING,
SOURCE CONTROL
MANAGEMENT…

TRANSPORT

SSH, WINRM, NETWORK_CLI, HTTPAPI

AUTOMATE
YOUR

ENTERPRISE

ADMINS

ANSIBLE CLI & CI SYSTEMS

ANSIBLE PLAYBOOKS

….

ANSIBLE
TOWER

SIMPLE USER INTERFACE

ROLE-BASED
ACCESS CONTROL

CONFIGURATION
MANAGEMENT

APP
DEPLOYMENT

CONTINUOUS
DELIVERY

SECURITY &
COMPLIANCE

ORCHESTRATIONPROVISIONING

KNOWLEDGE
& VISIBILITY

SCHEDULED &
CENTRALIZED JOBS

TOWER API

ANSIBLE
ENGINE

OPEN SOURCE MODULE LIBRARY

PYTHON CODEBASEPLUGINS

APP DEVELOPMENT

PYTHON VENV,
NPM,
YUM,
APT,
PIP...

CLOUD.REDHAT.COM

AUTOMATION
HUB

AUTOMATION
ANALYTICS

Ansible Automation Platform

CERTIFIED COLLECTIONS

PARTNER COLLECTIONS

PERFORMANCE DASHBOARD

ORGANIZATIONAL STATS

FEATURE OVERVIEW:

Job Template

Everything in Ansible Tower revolves around the
concept of a Job Template. Job Templates
allow Ansible Playbooks to be controlled,
delegated and scaled for an organization.

Job templates also encourage the reuse of
Ansible Playbook content and collaboration
between teams.

A Job Template requires:
● An Inventory to run the job against
● A Credential to login to devices.
● A Project which contains Ansible Playbooks

Job Templates

Inventory is a collection of hosts (nodes) with
associated data and groupings that Ansible Tower
can connect to and manage.

● Hosts (nodes)
● Groups
● Inventory-specific data (variables)
● Static or dynamic sources

Inventory

Credentials are utilized by Ansible Tower for
authentication with various external resources:

● Connecting to remote machines to run jobs
● Syncing with inventory sources
● Importing project content from version

control systems
● Connecting to and managing network

devices

Centralized management of various credentials
allows end users to leverage a secret without
ever exposing that secret to them.

Credentials

Project
A project is a logical collection of Ansible
Playbooks, represented in Ansible Tower.

You can manage Ansible Playbooks and
playbook directories by placing them in a
source code management system supported
by Ansible Tower, including Git, Subversion,
and Mercurial.

Exercise 5 - Explore Red Hat Ansible Tower

Explore and understand the lab environment. Locate and understand:
● Ansible Tower Inventory
● Ansible Tower Credentials
● Ansible Tower Projects

Approximate time: 15 mins

Exercise 6

76

Ansible Network Automation Workshop

Topics Covered:

● Building a Job Template

● Executing a Job Template

Job Templates can be found and created by clicking the Templates
button under the RESOURCES section on the left menu.

Expanding on Job Templates

Job Templates can be launched by clicking the rocketship
button for the corresponding Job Template

Executing an existing Job Template

New Job Templates can be created by clicking the plus button

Creating a new Job Template (1/2)

This New Job Template window is where the inventory, project and credential
are assigned. The red asterisk * means the field is required .

Creating a new Job Template (2/2)

Exercise 6 - Creating a Tower Job Template

Demonstrate a network backup configuration job template for Red Hat Ansible Tower.

Approximate time: 15 mins

Exercise 7

82

Ansible Network Automation Workshop

Topics Covered:

● Understanding Extra Vars

● Building a Tower Survey

● Self-service IT with Tower Surveys

Tower surveys allow you to configure how
a job runs via a series of questions,
making it simple to customize your jobs in
a user-friendly way.

An Ansible Tower survey is a simple
question-and-answer form that allows
users to customize their job runs.
Combine that with Tower's role-based
access control, and you can build simple,
easy self-service for your users.

Surveys

Once a Job Template is saved, the Add Survey Button will appear

Click the button to open the Add Survey window.

Creating a Survey (1/2)

The Add Survey window allows the Job Template to prompt users for one or more questions.
The answers provided become variables for use in the Ansible Playbook.

Creating a Survey (2/2)

When launching a job, the user will now be prompted with the Survey. The user can
be required to fill out the Survey before the Job Template will execute.

Using a Survey

Exercise 7- Creating a Survey

Demonstrate the use of Ansible Tower survey feature

Approximate time: 15 mins

Exercise 8

88

Ansible Network Automation Workshop

Topics Covered:

● Understanding Organizations

● Understanding Teams

● Understanding Users

Role-Based Access Controls (RBAC) are
built into Ansible Tower and allow
administrators to delegate access to
inventories, organizations, and more.
These controls allow Ansible Tower to
help you increase security and streamline
management of your Ansible automation.

Role Based Access Control (RBAC)

● An organization is a logical collection of users,
teams, projects, inventories and more. All entities
belong to an organization with the exception of
users.

● A user is an account to access Ansible Tower and
its services given the permissions granted to it.

● Teams provide a means to implement role-based
access control schemes and delegate
responsibilities across organizations.

User Management

Clicking on the Organizations button in the left menu
will open up the Organizations window

Viewing Organizations

Clicking on the Teams button in the left menu
will open up the Teams window

Viewing Teams

Clicking on the Users button in the left menu
will open up the Users window

Viewing Users

Exercise 8 - Understanding RBAC

The objective of this exercise is to understand Role Based Access Controls (RBAC)

Approximate time: 15 mins

Exercise 9

95

Ansible Network Automation Workshop

Topics Covered:

● Understanding Workflows

○ Branching
○ Convergence / Joins
○ Conditional Logic

Workflows can be found alongside Job Templates by clicking the
Templates button under the RESOURCES section on the left menu.

Workflows

To add a new Workflow click on the green + button
This time select the Workflow Template

Adding a new Workflow Template

Fill out the required parameters and click SAVE. As soon as the
Workflow Template is saved the WORKFLOW VISUALIZER will open.

Creating the Workflow

The workflow visualizer will start as a blank canvas.
Workflow Visualizer

Visualizing a Workflow
Workflows can branch out, or converge in.

Green indicates this Job
Template will only be run if the
previous Job Template is
successful

Red indicates this Job
Template will only be run if the
previous Job Template fails

Blue indicates this Job
Template will always run

Exercise 9 - Creating a Workflow

Demonstrate the use of Ansible Tower workflow

Approximate time: 15 mins

GET STARTED JOIN THE COMMUNITY

WORKSHOPS & TRAINING SHARE YOUR STORY

ansible.com/get-started

ansible.com/tower-trial

ansible.com/workshops

Red Hat Training

ansible.com/community

 Follow us @Ansible

 Friend us on Facebook

Next Steps

http://ansible.com/get-started
https://www.ansible.com/products/tower/trial
https://www.ansible.com/workshops
https://www.redhat.com/en/services/training/all-courses-exams
https://www.ansible.com/community
https://twitter.com/ansible
https://www.facebook.com/ansibleautomation

● Slack
https://ansiblenetwork.slack.com
Join by clicking here http://bit.ly/ansibleslack

● IRC
#ansible-network on freenode
http://webchat.freenode.net/?channels=ansible-network

Chat with us

https://ansiblenetwork.slack.com
http://bit.ly/ansibleslack
http://webchat.freenode.net/?channels=ansible-network

● Examples, samples
and demos

● Run network
topologies right on
your laptop

Bookmark the Github organization

linkedin.com/company/red-hat

youtube.com/AnsibleAutomation

facebook.com/ansibleautomation

twitter.com/ansible

github.com/ansible

CORPORATE SLIDE TEMPLATES

105

Thank you

